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OPTIMUM TWO-DIMENSIONAL SINGLE-STAGE
LAUNCH FROM THE SURFACE OF MARS

By Thomas B. Murtagh
1.0 SUMMARY

A detailed mathematical description of the optimization procedures
used to generate two-dimensional single-stage launch trajectories is
presented. A typical velocity budget for a launch from the surface of
Mars is developed to illustrate the theory. This trajectory consists of
& 10-second vertical rise followed by a time-optimum transfer to an inter-
mediate orbit which has an apoapsis altitude of 100 n. mi. For the

cases considered, the launch velocity requirémeént was between 14 000
and 15 500 fps.

2.0 INTRODUCTION

The mission plan and systems model which might be used to fly a
manned mission to Mars is discussed in considerable detail in reference 1.
Some of the mission objectives outlined in that reference involve unmanned
and manned landing vehicles to research and explore the Martian surface.
The retrieval of these vehicles by a launch from the surface to some
intermediate parking orbit is the subject of this note. The lander is
assumed to coast in the intermediate orbit and then to execute a series
of maneuvers to rendezvous with the main spacecraft in its Mars parking
orbit. A subsequent analysis will be performed to calculate these
rendezvous maneuvers.

The analysis presented here is an extension of the preliminary
performance estimates provided in reference 2. It that reference, a
time-optimum, range-free trajectory program, which assumed constant
thrust, was used to obtain the dsta. However, the atmospheric drag
terms were included only in the dynamical equations of motion and were
omitted in the equations which provide the feedback control for shaping
the optimum trajectory. This mathematical limitation was removed for
the current analysis. The purpose of this analysis is (1) to provide
a detailed mathematical description of the optimization procedures and



convergence techniques used to generate the numerical data, and

(2) to discuss some typical performance data which provide the motivation
for the ultimate choice of the characteristics of the intermediate
parking orbit for the lander. These parking orbit characteristics will
be used in a subsequent analysis to develop a launch window profile

for the lander.

3.0 SYMBOLS
A vehicle cross-sectional area )
CD drag coefficient .
C matrix defined in eq. (54)
E energy of orbit
f ~ vector function defined in eq. (10)
fl, f2, f3, fh components of f
F vector defined by eq. (13)
Fl’ F2 components of F
g vector function defined by eq. (L43)
h vector function defined by eq. (uk)
H generalized Hamiltonian defined by eq. (9)
I identity matrix
L angular momentum of orbit
m - vehicle mass
T radial position (fig. 1) -
T vehicle thrust
t time

u radial velocity (fig. 1)




v tangential velocity (fig. 1)

WO initial vehicle weight

X state vector defined by eq. (11)

y correction vector defined by eq. (53)

z augmented state vector defined by eq. (13)
o parameter defined by eq. (55)

B » angle between thrust and local horizontal
€ o . parasmeter defined by eq. (57); -

r transition matrix [eq. (49) and (50)]
| 8 » angular position (fig. 1)

o) atmospheric density

A Lagrange multiplier vector

Al, 12, A3, Ah components of A

M gravitational constant times mass of central body
g parameter defined by eq. (52)

n true anomaly

Subscripts

B( ) . - . ¢ partial derivative‘of B yith“;espect to (‘)
t © final value

o initial wvalue

Superscripts

T transpose operator

(') derivative of ( ) with respect to time

-1 inverse operator



Operators

a( ) differential of ( )
§( ) variation of ( )
DIAG( ) diagonal of ( )

4,0 ANALYSIS

4.1 State and Co-State Differential Equations
The nonlinear ordinary differential equations of motion for the

two-dimensicnal , minimum-time, constant-thrust launch trajectory are
shown by equations (1) through (4) (ref. 3).

pC_Au yu? + v2

C_v2 T . D

sep b (Q) sms - g )
. - T pCDAv Yu? + v2

"“T*(E) cos & - 2 (2)
r=u (3)
© oy .

6 =< (4)

where u, v, r, and 6 are the radial velocity, tangential velocity,
radial position, and angular position, respectively (fig. 1). The

control variable B 1is the thrust orientation with respect to the local
horizontal; m = mo - mt is the vehicle mass; and p = p(r) is the density
of the atmosphere. The drag coefficient CD and the vehicle cross-
sectional area A are assumed constant. The Euler-Lagrange (costate)
differential equations are represented by equations (5) through (8).




D> e

pCDA(Qu2 + v2)

H R 2

pCDAuv

._.__._._._.'..Y-‘_)\
anyu? + v2 T

oy ! pCDAuv

IR I ' (6)
1 r ‘amQUg + v2 '

2 2
N g% > 2 ) QDAundu. + v 3p
1]l r r 2m or
[, 2 2 :
lm NI el
2| rZ om or W\r2}f
A, = 0 | (8)

The generalized Hamiltonian is given in equation (9)

H=2)f (9)



where

e .

.

f(x, B, t) (10)

@ R

4 €

and x =

H

(11)

A3
M)

The optimality condition Hg = 0 produces equation (12).

sin B =




Ao

= - (12)
+‘} E a2
+ Al + AQ

where the term ‘Pd? + Agz is the magnitude of the primer vector

(ref. 4) in the two-dimensional case. The sign ambiguity on the radicals
in equation (12) is resolved by application of the Legendre condition
for a minimum, HBB > 0, which requires the selection of the minus sign.

cos B =

4.2 Perturbation Equations

The use of the method of perturbation functions (MPF) (ref. 3)
to generate numerical converged solutions to optimization problems
requires the derivation of a set of perturbation equations. An augmented

form of the state and costate differential equations is given in
equation (13).

. [x] H)\T(x,)\,t) Fl [] (13)
= * = = = {F 13
* -HXT(x,x,t), Fa| | ‘

N

The perturbation equation.is given by equation (1k)

67 = [;—1:] 8z (14)

where

Q
i
[
vt
!
[

|
|

(15)

@
»
%)

@
]

@
>

The submatrices required in equation (15) can be computed from



The matrix fx

where fl, £

partial derivatives required in equation (20) are defined in equation (21)

through (29).

2’

~-f

T

can be written as

f3,

shown by equation (20)

-1

x * HxpHgg

afl afl afl Bfl
ou ov or 90

8f2 8f2 8f2 3f2
u oV ar 96
] of of

ofy  9f3  ofy 9fg
Ju oV ar o6

afh th afh afh
Lau ov or 06

T

T

(16)

(17)

(19)

fh are defined in equation (10). The nonzero




(22)

2 2
9ty =_pcDA(zu + v2)
ou .’2m\/u2 + v2
|
3fy _2v PCHAUV |
v i 2m \u? + v2
2 2
Bfl _ (v)z gb‘- CDAu\/u + v 30
—_—= =) + - il
or r/J r -2m ar
8f2 _ v pCDAuv
ou o 2m u? + v2
2 2
3f2 _u pCDA(u + 2v2)
v r om \u? + v2
' Vo 732
af2___uv_CDAv us + v E.
or 1l om or
3,
ou
M1
ov r
v
ar r?

(23)

(2L)

(25)

(26)

(27)

(28)

(29)
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The partial derivatives given in equations (21) through (29) can be
extracted from the appropriate coefficients in equations (5) through (8).
The vector f is calculated from

B

T L cos f]
. cos B
I T
fB = = sin B (30)
0
| o
and
I 2 2
Hog = (m) ME (31)
The vector HBX is a null vector, and the symmetric matrix Hxx has
the form
H H H H |
uu uv ur ub
H H H
H - vV vr vo
XX (32)
H H
rr ré
| o0

The nonzero second partial derivatives required in equation (32) are
computed from equations (33) through (38).




) 4

uu

uv

rr

pC

11

3 2 3
A )\l(2u + 3uv )' + AV

pyanlhe
r or 2m NZ 2

D : (33)
(u2 + vz)Vu2 + v2

3 3
pCDA Alv + Azu

m (02 + v2) Vu2 + v2 (34)

2 2
3 CoA Al(2u + v?) + A uv

(35)

pC_A aud o+ A2(3u2v + 2v3)

1 D 1

- —= - (36)

(w2 + v2) Yu? + v2

(37)

(38)
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k.3 Boundary Conditions

The boundary conditions for the state and costate differential
equations (ref. 3) can be expressed as by equations (39a) and (39Db).

]
(@]

glz_, t,) (39a)

e}

t.) =0 (39b)

h(zp, by

where to and tf represent the initial and final times, respectively.

It is reasonable to assume that the components of the initial state
vector are specified so that

x(t ) -x =0 (LO)

and the unknown elements of z, are Just the initial values of the
Lagrange multipliers A . Equation (40) represents four of the required

nine boundary conditions required to solve the two-point boundary value
problem characterized by equations (1) through (8). The remaining five
boundary conditions are obtained by use of the tranversality condition
(ref. 3) at the terminal time tf. The performance index, which is

the function to be extremized, for the launch problem considered in this

note is the time of flight tf - to = tf. With this performance index,

the transversality condition at tf becomes

T
SAp ax, (1 + H)f dt, = 0 (41)

4.3.1 Fixed argument of periapsis and true anomaly.- If the launch
is assumed to terminate at a specific point in a particular orbit
(fixed state in two dimensions), then the terminal boundary conditions
as derived from equation (L1) are
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”u(tf) - u,]
v(tf) - vf
h(z,, t,) = r(ty) -ro | g (42)
é(tf) - 6,
| H)ﬁ_
The initial boundary condition A3(to) = -1.0 is used in place of the

‘terminal boundary condition. (1 + H)f =0 :so that equations (39) become

ate) -]
v(to) - v,
glz_, t) = [F0) "ol =0 (43)
: e(_to) - 6o
_AB”(to) + 1_
and
Mult,) - u]
v(tf) -V
Blxes €20 = fr(s) x| =° ()
_e(tf) - 65




1k

4.,3.2 Free argument of periapsis, fixed true anomaly.- If the
launch is assumed to terminate at a specific point in an orbit whose
line of apsides is unspecified (i.e., angular position free in the two-
dimensional problem considered in this note), the initial boundary
conditions are given by equation (43), and the terminal boundary
conditions as derived from equation (L1) are represented by equation (L5).

:ﬂtf)— u;
v(it,)) - v
Bz t) = [ T Fl=o (45)
r(tf) -r,
I

4,3.3 Free argument of periapsis and true anomaly.- If the launch
is assumed to terminate in an orbit whose shape is specified (i.e., semi-
major axis and eccentricity) but the position in the orbit and apsidal
orientation are unspecified, the initial boundary conditions are again
given by equation (L43), and the terminal boundary conditions are
represented by equation (L6).

rrv - L » W

) =0 (L6)

h(zt, te

wvhere E and L are the energy and angular momentum of the desired
orbit.
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L.} Integration Procedures

The numerical integration of equations (1) through (8) requires
initial values of the Lagrange multipliers A(to) and the state vector
x(to). The initial state vector x(to) is usually specified; reasonable
values for A(to) must be guessed. From equation (8), it is evident
that Ah(t) is a constant. Furthermore, when the argument of periapsis
is unspecified [eqs. (L45) and (L46)] Au(t) = 0. If the argument of
periapsis is specified [eq. (L44)], an initial guess of lh(to) =0 is

usually quite good. Use of equation (43) for the initial boundary
conditions constitutes specification of A3(t0). Consequently, the

only unknown initial multipliers are Al(to) and Ae(to). It can be

shown (ref. 5) that, for the case in which the argument of periapsis is
free, a reasonable calculation of these initial multipliers is provided
by equations (47) and (L48).

. t x.(t ) |
_ 3 (k1)
>‘2(1-'0) " tan B (to) -Otan ) (tf)
Al(to) = A2(to) tan B (to) (48)

Some estimate is still required for the initial and final pitch angles
B(to) and B(tf) and the time of flight t. but these parameters

possess more physical significance than do the corresponding Lagrange
multipliers., The integration of the state and costate equations of
motion with some z(to) generally will produce an h(zf, tf) which is

nonzero. The error is this terminal constraint vector must then be
mathematically related to the initial conditions to begin an iteration
procedure which will converge on the desired solution.
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4.5 Iteration Procedures

If the value of the terminal constraint vector is expanded in a

Taylor series about the value obtained on the ith iteration and only
first order terms are retained (ref. 6), then equation (L9) results.

_ px -

where the transition matrix F(tf, to) is obtained by simultaneous

integration of the equation

f(tf, £ ) = E%] r(t,, t,) (50)

with the equations of motion and the Euler-Lagrange equations subject to
the initial conditions F(to, to) = I, where I is the identity matrix.

Because the initial state vector x(to) and the initial multiplier

A3(to) are assumed to be specifed, Gx(to) = 0 and equation (49) can be

modified to equation (51).
= 1o} = -~ .
dh (z,, t,) = Lz]fl"(tf, ) 8A (to) + h, dt, (51)

where f(tf, to) is a reduced form of F(tf, to) and 6&A (to) is &
reduced form of &\ (to). The correction to the initial multipliers

and the time of flight can be computed directly from equation (51) after
dh (zf, tf) is calculated. One approach is to use the fractional

correction procedure (FCP) (refs. 3 and 6) which requires that equation (52)
be satisfied.

t.) (52)

dh (zf, t.) = -Eh(zf, ¢

f
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where & 1is a number between 0 and 1. The use of small values of & 1in
this equation enchances the possiblity of convergence but increases the
computer time. Large values of { reduce computer time if the solutions

on successive iterations are close to the desired solution but the
probability of divergence is increased. The minimum-norm correction
procedures (MNCP) derived and discussed in reference 6 enhance the
convergence probability by producing an iteration procedure which auto-
matically switches from a gradient solution to the classical Newton-

Raphson solution as the desired terminal boundary is approached. The
equation for the MNCP stepped -o technique (ref. 6) is given in equation (53).

-1
y = -»[CTC + a diag(CTC)] cTh (53)

where yT = [Gx(to) : dtf] and the matrix C is

c = [(%Izl)f T(e,, ) rlf] (54)

An initial value for ao is chosen, and equation (55) is used for

o in equation (53).
p

i
a = o llﬂ-—- (55)

[o} lhlmax

The equation for the MNCP stepped-e technique (ref. 6) is given in
equation (56)

-1
y = -(cTc + e1) c¢'h (56)

where an initial value for €y is chosen and € 1is computed from

equation (57)

i
e=c | (57)
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The parameter |h|1 is the norm of the terminal constraint vector
max
h( Zf’ tf) l

norm (usually produced on the first iteration). Equations (53) through (57)
are derived and discussed in considerable detail in reference 6 and are
listed in this note for the sake of completeness. ‘

on the ith iteration, and |h is the maximum value of this

4.6 Terminal Constraint Vector Derivatives

The partial derivative matrix [%5] £ and the total time derivative

vector h, required for equation (49) will now be listed for the three

terminal orbital configurations considered in this note. The matrix
9h

=5 | ¢ has the form shown in equation (58).

™, n
3h 9h ahl
au v axh
lE)_h] _ . . . (58)
9zlp . . .
th ahh ahh
_Bu v « o s BAQ_
and the vector hf is written
nT=|n n n n (59)
£ 17273 b .

4.6.1 Fixed argument of periapsis, true anomaly.- The nonzero partial
derivatives required in equation (58) are represented by equation (60) -
and (61).

ahl ) ah2 ) 3h3 ) Qhﬁ . (60)
du ov ar axh




Al

19
e M (61)
9z

For this terminal constraint configuration, [?Q] is a 4 by 8 matrix,
iy f

hf is a four-component vector, and

§AT (t,) = [csxl o), axu] (62)

4L.6.2 Free argument of periapsis, fixed true anomaly.- For this
terminal constraint configuration, the matrix (ggﬂf has a 3 by 8

dimension (omit the fourth row), and the nonzero partial derivatives are
as shown by equation (63)

dh oh oh

Bu} - 8v2 = 8r3 =3 (63)
The three components of ﬂf are
S (64)
and
A (t ) = [GA GA] (65)
0 1 2

The multiplier Ah(t) is not used in this option because it is

zero for all time.

L.6.3 Free argument of periapsis, true anomaly.- For this terminal

constraint configuration, the matrix [%%]:f again has a 3 by 8 dimension

(omit the fourth row), and the nonzero partial derivatives are
represented by equations (66) through (72).



(66a)

(66b)

(67a)

(67b)

(6Tc)

(69)

(70)
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3h
3 _1fp
A T u (rv - v) (71)
1
3h
o= =1 (72a)
2
3h 4
=2 =-z (72b)
3>\3 v

The components of h, are given by equations (73) through (76).

h) =rv +rv (73)
h2=uu+vvv+%xz‘— (74)

. AN v
+)\2-)\3<-;>+v— —;-r (75)
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siT (t,) = (Mldkg) (76)

5.0 RESULTS AND DISCUSSION

The Mars atmospheric density profile illustrated in figure 2 was
used for all data presented in this analysis. The ascent engine specific
impulse ISp was fixed at 380 seconds, and the initial lander ballistic

parameter WO/CDA was chosen to be 400 1b/ft2. The apoapsis altitude ha

of the intermediate ellipse was always 100 n. mi. These parameters were
arbitrarily chosen to illustrate the optimization techniques. The maximum

dynamic pressure calculated for the cases considered was 40 1b/ft2.

The characteristic velocity VC for the time-optimum (free argument

of periapsis) transfer from the termination of the 10-second vertical rise
(AV = 400 fps) to the specified intermediate orbit is presented in

figure 3 as a function of the true anomaly n at intermediate orbit insert-
ion. The curves were generated for initial thrust-to-weight ratios T/Wo

between 0.6 and 1.4 (measured in Earth g's). Periapsis altitudes hP

of 300 000 feet, 350 000 feet, and 400 000 feet were considered. Lower
periapsis altitudes would have produced undesirable orbit decay times

for the lander intermediate orbit. Note from these curves that the
performance (measured by Vc) is insensitive to variations in true anomaly

between -10° and +10°. Consequently, the choice of the true anomaly angle
at the intermediate orbit insertion point can be arbitrary within the
above limits. With n = +5°, the characteristic velocity was plotted
against the initial thrust-to-weight ratio in figure 4. The minimum Vc‘s

obviously occur for the lowest periapsis altitude (because the apoapsis
altitude is fixed at 100 n. mi.), and the minimum of that curve is for
0.8 iT/Wo < 1.0. Based on this data, the periapsis altitude of the

intermediate ellipse was chosen to be 300 000 feet (for n = +5°), and
the initial thrust-to-weight ratio was chosen to be 1.0 (measured in
Earth g's). The ascent and dynamic pressure profile for this case is
presented in figure 5.
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6.0 CONCLUSIONS

A detailed mathematical description of the optimization procedures
used to generate two-dimensional single-stage launch trajectories has
been presented. A typical velocity budget for a launch from the surface
of Mars was developed. The trajectory consisted of a 10-second vertical
rise which required approximately 400 fps followed by a time-optimum
transfer to an intermediate orbit which had an apoapsis altitude of
100 n. mi. For the cases considered, the total launch velocity require-
ment was between 14 000 and 15 500 fps. A subsequent analysis will be
performed to develop a launch window profile for the lander and will
include a calculation of the maneuvers required to rendezvous the

lander from its intermediate orbit to the main spacecraft in its Mars
parking orbit.
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